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We discuss the interconnection between different methods of constructing deci- 

sion strategies in encounter-evasion differential games within the framework of 

that formalization of these games which was the topic of the survey papers /J,2]. 

1. We consider a dynamic system described by the differential equation 

x’ = f (t, 5, U, 2)), u E p, 21 E Q (1.1) 

Here .r is the system’s phase vector, u and 2? are the control vectors of the first and 
the second players, P and Q are bounded and closed sets. The function f (t, x, 11. 1.) 
is continuous, continuously differentiable in x , and satisfies the condition 

II f II d h (1 -t 11 J: /I), h = const (1.2) 

where (( 2 I( is the Euclidean norm of vector z . 

By the game’s hypotheses, in a certain auxiliary space {t. m}, where m is a parame- 
ter, we are given a closed set M whose sections by the hyperplanes t = const will be 

denoted by M (t). We shall assume that the sets M (t) are bounded. Let T (to) be 

the set of those values of t > to for which the sections M (t) are nonempty. We are 
given a function P (t, X, m), bounded and continuous for all possible values of x and 

of m E M (t) (t E T (t,)) and continuously differentiable in x for 

Let 
a c p (t, 2, m) < B u. 3) 

0 (t, xc) = min p (t, 5, m) 
mfzfi1 (t, 

(1.4) 

The game’s outcome is determined by the functional 

cp (5 t * I) ==&fto) 0 @, 2 ItI) (1.5) 

which is minimized by the first player and maximized by the second. (A dot in the place 

of the argument of any function signifies that we are not dealing with the value of the 
function for any value of the argument but are dealing with this function as a whole as 
an element of a functional space). In particular, if the space {m} coincides withspace 
{x} and 

f (t, x, m) = II 2 - m II (1.6) 

and so we have a = 0 in (1.3), then we obtain the standard encounter-evasion game 
[l] with set M in the space {t, x}. In this case we can desist from the condition ofbound- 
edness of the sets M (t) . 

In order not to fall outside the framework of pure strategies [1] U + u (t, x) and 
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vs v(t, x) I’f we shall assume that in ail positions {t, z> of interest to us the 
saddle-point condition of the small game [l] 

min max s’j(t, 5, U, u) = xny %si;s’j (t, LC, U, V) 
WSP va (X.7) 

is fulfilled for every choice of vector s . (Unless stipulated, the vectors under consider- 

ation are treated as column-vectors ; the prime denotes transposition). 
Otherwise it is necessary to transform the constructions used below in accordance with 

the rules from (1, 21 for analogous games examined in the classes of pairs: mixed stra- 

tegy-mixed strategy or s~ategy-counterstrate~. 

Thus, by formalizing the motions 2 It, to, x0, U] and z It, t,, x0, V] as the 

limits of the Euler polygonal lines [l] xA [t, t,,, CIJ,, U, v [.I] and zA It, to, “c,, 
V, u [-I], being the solutions of the equations 

X A . = f (t, XA, %(%ip XA Izil)~ v[tl) (*i < f ( zfSl) 

$4 l = f (6 XA., u ItI, (5l.v 5A ITi*l)) tTiilc Q t < ‘;+I) 

we obtain the following two problems for the first and second players, respectively. 

Problem 1. Given the position (t,, zoj_ Find the optimal minimax strategy 

i? t U* (t, 2) which satisfies the condition 

sup tp (X [. , to, x0, U”]) = rn? ;uF*r$ (5 I *, to, 5oyW 
x [,I 

Problem 2. Given the position {to, x,}. Find the optimal maximin strategy 

p -+- no (t, X) which satisfies the condition 

inf rp (2 [ +, to, x0, V’]) = rn;x zr,‘p (5 f a, 63, 20, VI 
x I.1 

2, The game being analyzed is characterized by the following theorem on the alter- 
native, which transforms the alternative formulated in [l] for the standard encounter- 

evasion game. Let 2’ (to, 6) be the collection of all values of t for the interval [to, 

+] for which the sections &f (t) are nonempty. We denote 

‘Pe (5 t * I) = ,Ep(p*) 0 (4 32 PI) (2.1) 0. 

Then the following statement is valid under condition (1.7). 

Theorem 2.1. Whatever be the position (to, 2s) and the numbers 6 > to and 

c, either there exists a strategy U, +- n, (t, z) which guarantees the inequality 

% (x I.* t,, 50, U,l) < c (2.2) 

or there exists a strategy V -+ a (t, cc) which guarantees the inequality 

9.3 (x t*, to, x0, VI) > c (2.3) 

Stated differently : either there exists a strategy V, + D, (t, 2) which guarantees the 
inequality 

‘Pa (z I*, t,, zo, V,l) >c G.4) 

or there exists a strategy U +- u (t, CC) which guarantees the inequality 

*) Editor’s Note, Thesymbol .+ denotes the correspondence between the stra- 

tegy and the function prescribing this strategy. 
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(Pa (z r- 9 t,, %r Ul) c c (2.5) 

From this theorem follows the existence of a saddle point for the differential game 
set together from Problems 1 and 2 by choosing cp = ~a in them. 

3, Suppose that for some choice of # > to and c there exists a strategy U, guaran- 
teeing the fulfillment of condition (2.2). Then, according to [l ‘J, there exists a u-stable 
bridge Wu8so which forms a closed set in the space (t, z), passes through the position 

{to, x00). and terminates on the set L,* (6) at the instant 6 where 

.&* (t) = fit, I) : 0 (t, 2) 6 cl 

i. e. the section wUac (6) lies in L,* (6). (Without loss of generality we assume that 
the set L,*.(6) is nonempty because otherwise we can replace 6 without anything being 

essentially changed, by the largest of the numbers fi*(& which satisfy the condition). 
The strategy U, + uc (& zz), extremal [l] to the bridge Wuepc, retains every motion 

5 It, to, x0, UC1 on WUe*c until this motion meets with L,* (t) for 7 < 6, which achieves 
the guaranteed fulfillment of condition (2.2). 

Conversely, suppose that for some choice of 6 > to and c there exists a strategy v, 
guaranteeing the fulfillment of condition (2,4). Then there exists a v-stable bridge 

Ws**’ which forms a closed set in the strip to < t < 6 of space It, zf, passes through 

the position {to, 20) and does not intersect the set 

L, = [{t, 5) : t E T (to, 6)x 0 (h 4 < cl 

The strategy V, -+ vc (t, z), extremal to bridge Waerct retains every motion 5 [t, to, w, 

V,J on Woe*’ until the instant 6, which achieves the guaranteed fulfillment of condi- 

tion (2.4). 
The assertion on the existence of the needed bridge W,,@J or ~~~~~~ bears the na- 

ture of a pure existence theorem. However, we can seek a bridge wu8sC or W,@sc on 
the basis of one of the well-known, more or less effective approaches_ In particular, the 
bridge bVU”*’ or Wva*’ can be sought by the method of extremal aiming 121 or in the 
form of an a priori stable bridge 121. A comparison of these two approaches in their 
application to the encounter-evasion game being considered here is the subject of the 

present paper, Generally speaking, the methods mentioned for constructing the bridges 
w a*e and W,a*’ 1( lead to different results. However, here we shall consider the cases, 

regular for each of these methods, when both methods lead to like results and each of the 
construction methods furnishes optimal strategies tP and v”. 

4, Paper @] describes the construction of bridges W,e+c and WV’*’ on the basis 
of auxiliary program instructions of extremal aiming, corresponding to a position en- 

counter-evasion game considered in the framework of mixed strategies. We describe a 
version of these constructions [3], corresponding to the position encounter-evasion game 
being considered within the framework of pure strategies U and V. 

Suppose that we have chosen a function vt (du), weakly-measurable in t (t* < t < 61, 
whose values Y (du) are probability measures on Q. A program (Q J vtJn is defined as 
the set of all possible functions tit (dtl, du) weakly-measurable in L (I+ f t < 6), whose 
values q (du, dv) are probability measures on P X Q satisfying the conditions 

‘I$ (du, dv) = Y* (dv) (4.1) 
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for almost all t. The program motions x (t, &, ZZ+ 11,) are defined as the solutions of 
the differential equation 

x’= * f (f, 
ss 

2, u, n) n, (du, du), x (f*)= 2* (4.2) 
PQ 

An auxiliary program problem is formulated as follows. 

Problem 4.1. The initial position {&., x*} is given and the number 6 > t, 

has been chosen. We are required to find ‘t,,, a maximizing program {?h [ vtO}n, and 
an optimal control qfo E {qt 1 vto}nr satisfying the condition 

We assume the fulfillment of the following condition. 
Condition 4. 1. With a selected value of 6, for every initial position {t*, z*} 

in a region a0 (t*, x*) E (a, p), t, < 13 , we can find at least one minimizing instant 
‘CO from (4.3) such that every maximizing program from (4.3), corresponding to this z,, 

contains only a single, essentially optimal control v;, and the corresponding minimiz- 
ing value m,from (1.4), satisfying, therefore, the condition 

is also unique. 

The set of values of Z, satisfying this condition is denoted by To (t,, -8). When Con- 

dition 4.1 is fulfilled, the optimal control for Problem 4.1 with a0 (t+, X*) E (a, @) 

and 2, E T” (t,, 6) satisfies the following maximin condition which in the given max- 

imin case of Problem 4.1 corresponds to the maximum principle [4] for the usual prog- 
ram problems of optimal control. The equality 

PQ 

max mins'(t)f(t, J:(t, t,, z*, q."), WI 
VEQ UEP 

is valid for almost all t E It,, 81 . Here s (t) is the solution of the problem 

s’ = - il;\ {g[ rlf’(h w] s 
& 

s lro) = $$J = M,,,,3z (+,, 1, r l).) m } > 1s.s . 

where {af / I%} is the Jacobi matrix computed on the optimal minimizing 

5 (t, t*, x*7 $7. 
In the case of a properly linear equation of motion (1. l), when 

z’ = A (1) 2 + f (t, u, a) 

(4.4) 

motion 

(4.5) 

the requirements of Condition 4.1 can be weakened, by requiring only that for every 
optimal motion 5 (t, t,, z* , q.“) f rom one and the same program the values of s (r) 
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from (4.4) turn out to be one and the same every time. If in the case of Eq. (4.5) we 

have further that the sets i!!f (t) are convex, then such a weakened Condition 4.1 is 
necessarily frilled automati~lly, Assuming Condition 4.1 as fulfilled, we say that 

the original position encounter-evasion game ser together from Problems 1 and 2 when 

cp = rpa is regular (I) if the following further condition is fulfilled. 

We introduce the following notation, The symbol S (t*, s,; ZO) denotes the set of 

all vectors s = s (t*) from (4,4) corresponding to all possible optimal solutions rn’ of 
Problem 4.1 for a given position {t*, x*) in region eo (t*., z*) E (a, 6) and with the 
noted minimizing value 70, Further, let {t*, * z } once again be some position in the 

region so (t*, +) E (a, 6) and let (t*, z+} (t* >‘ t*) be a certain position close to it. 
Let zo* be any minimizing instant from Problem 4.1, corresponding to the position 
{t*, xx}; let {th 1 IQ*; w,*}~ be a maximizing program from a condition of form (4.3), 

corresponding to the position {t*, z*} but for the instant TO*, and let qt* E {% I V*; 
To*)~ be the minimizing control from a condition of form (4,3) for the instant TO* but 

for the position (t*, I*}; finally, let m* be the minimizing value in the condition 

0 (To*, 5 (TOO*, t*, 5*, q.*)) = p(‘o*, 2 (To*, t*, .z* 7 q*.), m*)=P (To*, eo*, t*, 5’, 11.7, m) 

for min m&J fro*). The symbol s (t*) denotes a vector of form (4,4) wherein we should 

only replace TO by TO*, z (zo, t*, z,, q-O) by x (TO +, t*, z*, q.*) and m” by m*. The sym- 

bol S* (t,, x*) denotes the set of all vectors s which are the limits for vectors of form 
.Y (t*) under all possible choices of positions it*, s*) - {t*, z*} and minimizing instants 
TO* corres~nding to these positions. In particular, if the sets M (t) are continuous in 
t E [to, 61 in the Hausdorff metric, then as the set S* (t,. x+) we should choose simply 
the set of all vectors S= s (t,) (4.4) corresponding to all possible optimal solutions 
Q” of Problem 4.1 for the position given. 

Condition 4.2. The following two requirements must be fulfilled whatever be 

the position {t*, x,} (t+ %<6) from the region Ed (t*, cc*) E (a, fi) . 
1’. For every choice of U* E Q we can find z. E I”” (t*, 6) and a vector f* 

f* E co V(f*, x*7 n, y*i), u E PI 
satisfying the inequalities 

s’f* < max min s’j (to, 5,, u, nj (4.6) 
VEQ UEP 

for all values of s E S (t*, z*; 1;‘). 

zO. For every choice of u* E p we can find a vector 

j* E co {f (t*, +, u*, u), u E Ql 
satis~~g the inequalities 

s’j* > m9.t F;; $7 (t*, x*, a, v) 

for all values of s E S* (t*, 2.J. 
If the game is regular, the sets 

(4.7) 

wuav”= [{t, x}:t,<t<% Eo(t, X)x;)Cl 

with c E [a, /3) are u-stable bridges, while the sets 

VV*a,c= [(t, z):t&t<@, eoft, x:)>c) 

with c E (a, fi) are v-stable bridges. Therefore, the strategies u, and V,, extremal 
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to these bridges WU8J and W08J, ensure, respectively, inequalities (2.2) with c E 
[a, @) and inequalities (2.4) with c E (a, PI; when c CF (a, p) they form, there- 

fore, a saddle point ( U,, V,. of the game being considered for the initial position (to, 

20) for which a, (to, 2,) E (a, p). 

6, Another way to construct the bridges wUelc and WVBJ is to seek them in the 
form of a p r i o t i stable bridges [ 21 on the basis of suitable integral manifolds. Let 
us start with that construction which corresponds to the notion of upper program from 
[5]. Let p, (6% 1 t, 5, v) (v E Q) be some function whose values p (du) are proba- 

bility measures on P. We construct the Euler polygonal lines XA* [t, t,, x*, p (a)] 
as solutions of the differential equation 

$A** = s f (t> XA*, u, v [zil) p (du 1 ri, XA* IziI, u [TiI) (5.1) 
P 

and next we set up the integral manifold X,* from all possible limits X* (t, to, %I, 
p ( s)) (t, < t < $3) for the convergent sequences of such Euler polygonal lines (under 

the conditions lim supi (zi4i - .ti) -= () ). We can verify that the set 

IV,@ = r{t, X} : t, q t < 6, z = 2* (t, t,, 50, p (*)I ~&I*~ (5*2) 

forms a u-stable bridge. Analogously, by choosing a function Y (dv 1 t, 2, u) (U EZ &‘) 
whose values Y (dv) are probability measures on Q, we construct the integral manifold 
Xv* from all possible limits z.z* (t, t,, zo, y (.)) (to < t < 6) for the Euler poiygonaf 

lines XA* [t, to, cc*, Y (a)] which are solutions of the differential equation 

(5.3) 

The set 
Q 

WV8 = [{t, x} : t, < t < 6, z = 5* (t, t,, x0, Y (.)) E x,*1 (5.4) 

forms a v-stable bridge. The auxiliary problems connected with the bridges W,@ 

from (5.2) and W,a from (5.4) are formulated as follows. 

Problem 5.1. An initial position {t,, a+,} is given and the number 6 > to 
chosen. We are required to find the function l-to (& 1 t, 5, V) and the value of Za 

satisfying the condition 

Problem 5.2. An initial position (to, zo} is given and the number @ > te 

chosen. We are required to find the function YO (dv 1 t, 2, u) satisfying the condi- 
tion 

The existence of the optimal function v” (dv 1 t, J;, u) solving Problem 5.2 follows 

from Theorem 2.1. In fact, as such a function Y* (dv 1 t, IC, u) it is sufficient to 
select the function-measure y0 (dv [ t, 2) concentrated at the points 2) = V” (6 Z), 
where V” (t, z) is the function corresponding to the optimal strategy ‘v*.solving Poblem 
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2 with 9 = cpa. The question of the existence of the function PLO (du 1 t, 2, v) solv- 

ing Problem 5.1 cannot be answered in so simple manner. This question can once again 
be answered formally on the basis of Theorem 2.1 if the hypothesis in Problem 5.1 is 

modified somewhat, Namely, each motion z (t, t,, x*, u ( -)) can be broken off at the 
instant z,(.) E It,, 61 at which this motion first furnishes the minimum of the quantity 

0 (tt JrJ (t, t,, 501 u (.)), and next, instead of (5.5) the function p” (.) is sought 

from the condition of the minimum of the quantity 

min max 0 (TX(.), J: (%(.I, to, x0, CL Cm))) = e** Cto9 ro) (5.7) 
PC.) X(.) 

Then as the function p,O (du 1 t, 2, v) solving such a modified Problem 5.1 it 
again is sufficient to select the.function-measure p”O (du 1 t, 2) concentrated at the 

points u = u” (t, z), where u” (t, 5) is the function corresponding to the optimal 
strategy U” solving Problem 1 with ‘p = ~8. From the fact that the strategies U” + 

a0 (t, 5) and V” -+ V” (t, .r) form a saddle point of the game set together from Prob- 

lems 1 and 2 there follows the equality E* (t,, x0) = E** (to, x0). At the same time 

the bridges W,” and W,,@ constructed on the manifolds X,0* and Xv**, where in 

X,** the motions z (t, to, x0, p.’ (.)) are terminated each at its own instant t = Q.), 
are stable. Therefore, the solutions of problems (5.6) and (5.7) furnish optimal stable 
bridges Wu8 and W,@ for Problems 2 and 1, respectively. However, it is understood 
that by such means we do not obtain a new effective method for solving the problem 
because under condition (1.7) problems (5.6) and (5.7) are as a matter of fact simply 
reformulations of Problems 2 and 1. Nevertheless, conditions (5.6) and (5. ‘7) contain in 
explicit form one circumstance facilitating the solution, because, as a consequence of 
Theorem 2.1, to solve Problems 1 and 2 in the class of functions u (t, z) and v (t, x) 

it turns out to be sufficient to find the solutions of the analogous problems (5.7) and 
(5.6) in the wider class of functions p (du 1 t, 5, v) and Y (dv 1 t, x, u). To look 
for the optimal functions p” (du 1 t, x, v) and V’ (dv 1 t, 5, u) and for the bridges 
wUB and WV8 generated by them, constructed on the appropriate integral manifolds 

-%I~ * and Xv-*, we can now use various artificial devices. One such device known is 

discussed in Sect. 6 ; moreover, in the regular case to be considered therein we can make 

use of the coarsened Problem 5.1, not replacing condition (5.5) by the more complicated 

condition (5.7). 
Thus, in every case, the sets W,@ from (5.2) and WV8 from (5.4) are stable under 

condition (1.7). Therefore, the strategy U* + U* (t, cc), extremal to the bridge W,* 
from (5.2) with p ( .) = p0 ( .) in (5.2) guarantees in the position encounter game 
Problem 1 a value of the functional 

‘DtJ (x 1. I) < e* (to, x0) (5.6) 

while the strategv V* t z* (t, z), extremal to the bridge Wve from (5.4) with 
v (.) = v”(.). in (5.4) guarantees in the position evasion game Problem 2 a value 
of the functional 

‘pa (z 1. I) > E* (to, 50) (5.9) 

8, Let us discuss the construction of the a p ri or i stable bridges W,8 of (5.2) 
and WV8 of (5.4), constructed on the integral manifolds X,* and X,* from Sect. 5, 
by means of imbedding these integral manifolds in certain suitable integral manifolds 
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X, and X, generated by certain contingent differential equations (see [2]). In the 
form to be discussed here the construction of such contingent equations was studied in 

@, 71. In the case of a linear equation of motion such instructions can be traced back 

to the direct method from [8,9]. 

Let the sets 

fi (t? 4 =&co rf (r, z, U, C>, u E P) (6.1) 

be nonempty in some region G of space (t, x}. A vector h is contained in H (t, X) 
if and only if the inequality 

s’h > zox rnn; s7 (t, x, u, u) (6.2) 

is fulfilled for every choice of the vector s . We consider the function 

x (S, t, 2:) = rjuEy min.97 (t, I, u, 21) (6.3) 
UEP 

whose properties determine the regularity of the game. We set up an integral manifold 

X, set together from all solutions x (t, It,, z,,) (& < t < 6) of the contingent differ- 
ential equation 

z‘ E H (t, 5) (6.4) 

assuming that this whole integral manifold is located in the region G wherein the sets 

H (t, 2) are nonempty. 

Let 
E” (to, x0) = min min o(t, s(t, to, SO)) = (6.5) 

We choose the solution z” (t, t,, ~a) (to < t < rO) from condition (6.5). This solu- 

tion forms the u-stable bridge 

IV,:’ = r{t, 2) : t, 4 t < -co, 5 = 2 (t, tcl, %Jl (6.6) 

We say that the game set together from Problems 1 and 2 is regular (I I) if condition 
(1.7) is fulfilled and if the function x (s, t, X) of (6.3) is concave in s for every posi- 
tion {t, z} which can be encountered on the motions z (t, to, 20) with the initial 

data {to, n;*) from the region a” (to, 50) E [a, B], to < 6 , (Here it is assumed 

that for every position (to, 2,) from the selected region the quantity a0 (to, zn) (6.5) 

has a meaning, i. e, the corresponding motions z (t, t,, x0) (t,, < t < 6) remain in 
the region G wherein the sets H (t, 2) are nonempty. ) If the game is regular (I I), 
the set 

IV,@ = [{l, LX} : t, <t < 6, 2 = x (t, t,, %f E Xl (6.7) 

forms a a-stable bridge. Thus, if the game is regular (II) , then for E’ (t,, x0) E [a, 
fJ] the strategy U” -I u* (t, x), extremal to the bridge WdQ from (6.6) guarantees 
in the position encounter game Problem 1 a value of the functional 

‘Pe (z [* 1) < E0 (to, 4 (6.8) 

while the strategy V” + v* (t, z), extremal to the bridge WVa (6.7) guarantees in 
the position evasion game Problem 2 a value of the functional 

Cpa (X I*]) > E” (tot %I~ (6.9) 
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and so, the pair of these strategies again forms a saddle point of the position game under 

consideration, set together from Problems 1 and 2 under the choice 9 = cp~. 

7, The basic conclusions are formulated as follows. Suppose that the value of 9 has 
been fixed. Let us assume that in region 

the inequality 

e” (t, 2) < Eg (t, z) (7.2) 

has been ~l~lled. We select a position {to, Q} from region (7.1). We fix the mini- 

mizing value a“ from condition (6.5). Let $’ (t, to, z,,) (to < t < z’) be the corre- 
sponding minimizing motion form (6.5). Then this solution x0 (t, t,, x0) of Eq. (6.4). 
satisfying, therefore, the condition 

0 (9, z* (T”, to, 50)) = o* (to, xof (zO 4 s) (7.3) 

is simultaneously the optimal program motion 2 (t, to, zo, q,b) for Problem 4.1, cor- 
responding to the same minimizing instant ‘r. = z’. 

This statement is a consequence of the fact that as an effect of the rti-stability of the 

bridge WU5’ (6.6), constructed on the chosen solution x0 (t, to, zo) (to < t < Zp), 
for any choice of measure vt * (&) we can find the measure Q* (du, dv) connected 

with Y1* (dz;) by condition (4. I) and such that the program motion X (8, to, 20, rl? ) 

(to < t < 7”) generated by it, lies on the a-stable bridge W,‘” Therefore, this prog- 

ram motion II: (t, to, zo, q.*) coincides with 5c (t, to, X0) for to < t < i’ and 
yields the quantity 

0 (TO, 5 (ZO, to, 50, q**) ) = 0 (z”, P (?“, to, 20)) = a” (to, %I)’ 

But then ao(to z,) < a” (to, x0). Together with the contradictory inequality (7.2) 
this signifies the fulfillment of the equality 

“0 (t, Z) = E” (t, S) (7.4) 

Since under assumption (7.2) every minimizing motion 4 (t, to, x0) (to < t < f) 
from problem (6.5) turns out to be simultaneously the minimizing motion 5 (t, to, 50, 

It.“) from Problem 4.1, corresponding to the same value z. = r”, for this motion 1c (t, 
to, x0, q.*) we can compute the vector s (to) of (4.4) wherein it is necessary to re- 
place’ {t*, x.+} by {to, zo}. In connection with this circumstance we introduce the 
following condition. 

Condition 7.1. We say that this condition has been fulfilled if for every position 

{to, X0} from region (7.1). (7.2) we can find at least one minimizing value r” for prob- 
lem (6.5) such that for this value z” = Z, the requirement of Condition 4.1 is fulfilled. 
Furthermore, for this 1O all those minimizing program motions 5 (t, to, x0, ?I.“) which 
coincide with one and the same motion 4 (t, t,, zo) (to < t < -co) should yield one 
and the same value of the vector s (to) (4.4). 

We now assume that Condition 7.1 has been fulfilled. Again we select a position 

{to, 50) from region (7.X), (7.2) and we fix the value z” = z, satisfying the require- 
ments of Condition 7.1. Then, to this value r” there corresponds only a single solution 
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z” (t, t,, z,,) minimizing (6.5). 
Indeed, let us assume the contrary. Let x0(l) (t, to, 50) and z”(~) (t, to, XO) be two dif- 

ferent minimizing motions (6.4). corresponding to the sleeted value z”. Further, let 

Vlf I vt”ln be some maximizing program from (4,3), corresponding to this same value 
of TO = T”. Again, as a consequence of the u.-stability of each of the bridges W,;‘(r) and 
l@(2) of form (6.6), constructed on the motions U 5’ (i) (t, to, XO) (to f t < TO) and .“@) (t, 

to, I~) (to < t < zc) , respectively, we conclude that in the program {Q \ vto}n we can 
find measures rlt(r) and ntc2) (to < t < x0 = T@) such that the identities ~‘(r)(r, to, 50) f 

z 0, to. 20, v.(l)) and x”c2) (t, to, x0) E x (t, to, zo, ‘1 (2)) are fulfilled for to < t < TO = $. 
But this means that when TO E To (to, 6) the maximizing program (91 1 yt”ln: contains 
two different, essentially minimizing program controls ~~(1) and TV@). But this contra- 

dicts Condition 4.1. The contradiction obtained proves the uniqueness of the minimiz- 

ing solution P (t, ior 50) (to < t < a’). However, then all the minimizing motions I (t, 
to, 10, q.“) (to < t < TO = -co) of Problem 4.1 for the selected value of ro coincide 

with one and the same motion z (t, to, x0) (to < t < TO) ; therefore, it follows from 
Condition 7.1 that for this value of ‘co = ?’ all the minimizing motions z (t, to, m, T.“) 
yield one and the same value of vector s (to) (4.4). But in such case condition (4.6) is 
now fulfilled automatically for the indicated choice of {to, zoj and of TO = rO. 

Further, in condition (6.2) let the function x (6.3) be concave in S. Then, for every 
choice of the vector u E P the set 

intersects w (t, z). But, according to (6.2) this signifies the fulfillment of condition 
(4.7). Then for every choice of n E P in set (7.5) we can find even the vector 

f* = h E N (t, z) which satisfies condition (4.6) for every choice of S and not only 

a choice from some subset belonging to the space {s}. 
Summarizing the whole discussion we arrive at the following conclusion. Suppose that 

inequality (7.2) is fulfilled for all positions {t, z} from region (7.1). Then, equality 

(7.4) is fulfilled for positions {to, z,,} from region (7.1). If here Condition 7.1 is ful- 

filled, then regularity (I) of the encounter-evasion game set together from Problems 1 
and 2 with 9 = qe follows from regularity (I I) of this game. 

If the equation of motion (1.1) has the form of a properly linear Eq. (4.5) and (1.7) 

holds, and, moreover, if the sets M (t) are convex, the additional conditions (Condition 

4.1, condition (7.2) and Condition 7.1) are automatically fulfilled and, therefore, it turns 
out that every time the encounter-evasion game is regular (I I) , it is regular (I) and equal- 
ity (7.4) is valid. Indeed, the fulfillment of Condition 4.1 (in the weakened form corre- 
sponding to Eq. (4.5), to condition (1.7) and to convex M (t)) follows directly from 
the convexity of M (t) and of the region of attainability 

G = [{to, x} : 5 = z (r,, t,, ~0, rl., rl. 65 1% I v”M 

for every choice of program {qt ( Y~O}~. Equality (7.4) follows directly from the ex- 

pressions for e,, (t*, z*) and EO (t.+, ’ x*) which are obtained in a well-known manner 

(for example, see [lo]) + 

~~(l*, 2*) = min max max min Z’X (f, t) f (t, u, v) dt + 

Z’x’(.t, t*) 5* - 
(7.6) 

for 60 (t*, C& > 0 
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a’(&, Xx)= min max min Z’X (z, t) h* (t) dt + 
7 Ml=1 

(7.7) 

Z’X (% t*> x* for e’(&, 5J >O 

Here X (t, b) is the fundamental matrix of solutions of the homogeneous equation 
z’ = A (t) z, p ~(~1 (I) is the support function of the set M (T) . H* (t) is a set of 

vectors 

H* (t) = [h* : s’h* > max min s’f (t, U, v) = x* (s, t), s E (s}] (7. B) 
v=Q UEP 

The function x* (s, t) is concave by assumption. But then, for every choice of vector 

s we can find a vector h* (s) satisfying the equality [11] 

s’h” (s) = rnny min s’j (t, U, u) (7.2) 
UEP 

from which follows the coincidence of the values of e,, (t*, z*) (7.6) and of e* (t*, ?*) 

(7.7). Finally, the fulfillment of Condition 7.1 in the properly linear case being con- 
sidered follows from noting that in the case of Eq. (4.5) the value of vector s (t*) of 

(4.4) does not depend upon the choice of control qto if all the controls qt” being con- 
sidered, generate one and the same minimizing motion 9 (t, t,,, x0) = z (t, t,, z,,, 
q.‘), yielding, therefore, one and the same boundary condition (4.4) for the vector-valued 

function s (t). 
In the general nonlinear case we have not succeeded in finding the condition guaran- 

teeing the fulfillment of the additional assumptions (Conditions 4.1 and 7.1 and inequal- 

ity (7.2)). However, we can point out conditions of a special form. One of these con- 
ditions is as follows. When Condition 4.1 is fulfilled, for every choice of position {t, z} 

and of a nonzero vector s we can find only a single measure rh* (du, dv), satisfying the 

condition n ,, ,, 

Ii s’f (t, 2, u, V) nt* (du, dv) = min zL~p 
I 

S’f (r, 2, u, v) vt* (W = (7.10) 

Q Q 

the measures nt* and vt* are connected by condition (4.1). Or we can desist from the 

a priori requirement of Condition 4.1, but, in this case,we must stipulate the existence 
of at least one minimizing instant r” from (6.5), to which there corresponds only a sin- 
gle minimizing motion Z” (t, to, XO) (to < t < TV) and, besides, the value no from (1.4) 
with t = z”‘and z = 2” (2”, to, zo) also must be unique. To thfs condition it is again 
sufficient to add on further the condition of uniqueness of the measure rh* from (7. lo), 

the maximin condition, and that Eq. (4.4) in s satisfies the Lipschitz condition. 
Finally. in the general case the relations between regularity (I) and regularity (II) of 

the game, in such aspects, are characterized somewhat differently. Let us assume that 
the game is regular (II) and that Conditiob 4.1 and condition (4.6) are fulfilled at the 
same time. Then EO (t, x) = 8’ (t, x) for EO (t, .z) E [a, /3) and the fulfillemt of condi- 

tion (4.7) follows from regularity (II), i. e. again the game is regular (I). 
Let us now return to the constructions from Sect. 5. Let the game in the general non- 

linear case be regular (II). Then e* (t, z) = a* (t, X) = a0 (t, 2) and Problem 5.1 
is solved by the function p” (du) = p” (&a 1 t, x, v) which can be chosen from the 
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condition 

s f (t, 2, n, n) $ (du) = 5-O (C to, 20) 

for {t, z} = {t, 4 It); and 

(I. 11) 

(7.12) 

for other {t, 31. Here 3’ (t) = s* (t, to, zof is any one of the solutions of problem 

(6.5). Problem 5.2 is solved by the function v*(dn) = v” (dv 1 t, 5, u) which is 
chosen from the condition 

s f(t, I, U, V)YO(dU)EH@, xc) (7.13) 
Q 

The validity of the assertions made follows from the remarks given below. The func- 
tion P” (du), found from conditions (7. II), (7.12) which are analogous to the conditions 
determining the strategy extremal to the bridge W,‘” of (6.6) as also the position ex- 
tremal strategy, ensures the sliding along the u-stable bridge W%*” of (6.6) until the 
instant t = 2’ of all solutions z*(t, to, 50, p” (.)f being the limits of the Euler polygonal 

lines x~* (t. lo, z*, P” (6)) of (5.1). Hence follows the inequality 

a* (lo, IO) d E” (to, 20) (7.14) 

Further, the ~sibility of choosing the measure v” (dv) from condition (7.13) for every 
choice of u f% P follows from the fact that under the concavity condition of function 

x (s, t, x) (6.3) the sets F, (t, 5, U) of (7.5) and H (t, 5) have a nonempty intersection. 

But, further, all motions CC* (t, to, .Q, Y” (.)), being the limits of the Euler polygonal lines 
5A* (t, to, XO, v” (s)) (5.3) for the indicated choice of the measure V’ (& 1 t, 2, U) = 

V” (dl;f (7.13) are contained in the family of all motions I (t, to, ~0) (to f t < 6) of 

Eq. (6.4). Therefore, the w -stable bridge W,” (5.4) constructed on the motions x* (t, 
to, XO, v” (.)), is contained in the u-stable bridge lp08 (6.7). Hence follows the inequa- 
lity 

e, (to, 3%) S= e” (to, 20) (7.15) 

Finally, from inequalities (7.14), (7.15) and from the fact that when the game is regular 

(II) aO(t, zO) is the game’s value, follows the optimality of the functions P” (dn 1 t- xy 
v) and V” (du 1 t, z, u) indicated. 

In the case of a properly linear equation of motion (4.5) the functions p (dzt 1 t, z, 
v) and v* (&J 1 t, z, a) can be chosen analogously when the game is regular (II), but 
now independently of z , and then these functions acquire the meaning of upper programs 
from [5]. As a matter of fact, the function y”(& 1 t,v) can then be chosen from thecon- 
dition 

while the function y” (& / t, a) from the condition 

5 *f \t, u, v) v” (dr;) = II” (t) 
Q 

where H” (t) is the set (7.8). 
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We examine a nonlinear differential game of the encounter of a conflict-cont- 
rolled phase point with a given set. We prove sufficient conditions for the suc- 

cessful termination of the game in the class of mixed strategies, These conditions 
are based on the extremal construction introduced in [l] and modified here to 

conform to the question being discussed. 

2. Strtamsnt of the problem, Let the motion of a controlled system be 
described by the differential equation 

2’ -= f I:, 2, u, 0) (1.1) 

Here z is the system’s n-dimensional phase vector; u and v are r-dimensional con- 

trol vectors of the first and second players. respectively, and constrained by the conditions 


